Robust Bayesian Compressive Sensing with Data Loss Recovery for Structural Health Monitoring Signals
نویسندگان
چکیده
Yong Huang, James L. Beck, Stephen Wu, Hui Li Key Lab of Structural Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA Computational Science and Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
منابع مشابه
Robust Diagnostics for Bayesian Compressive Sensing with Applications to Structural Health Monitoring
In structural health monitoring (SHM) systems for civil structures, signal compression is often important to reduce the cost of data transfer and storage because of the large volumes of data generated from the monitoring system. Compressive sensing is a novel data compressing method whereby one does not measure the entire signal directly but rather a set of related (“projected”) measurements. T...
متن کاملBayesian Learning Algorithm for Compressive Sensing of Non-Sparse (EEG) Signals
Compressive Sensing (CS) is an emerging compression technique that takes advantage of a signal’s sparsity to sample and compress this signal at the same time. Its many advantages as well as its satisfactory compression ratios (CR) makes it a very desirable technique in telemonitoring where the bandwidth available is very small and needs to be efficiently used. In the case of electroencephalogra...
متن کاملStochastic optimization using automatic relevance determination prior model for Bayesian compressive sensing
Compared with the conventional monitoring approach of separately sensing and then compressing the data, compressive sensing (CS) is a novel data acquisition framework whereby the compression is done during the sampling. If the original sensed signal would have been sufficiently sparse in terms of some orthogonal basis, the decompression can be done essentially perfectly up to some critical comp...
متن کاملCompressive Sensing for Full Wavefield Image Recovery in Structural Monitoring Applications
In this paper, a random sampling scheme based on Compressive Sensing (CS) is used in order to reduce the acquisition time of wavefield signals by means of a scanning laser Doppler vibrometer (SLDV) for Structural Health Monitoring (SHM) applications. The sampling process is indeed quite time consuming, because of noise sources and reduced amplitude of acquired signals. By virtue of the sparse c...
متن کاملSparse Bayesian Learning in Compressive Sensing
Traditional Compressive Sensing (CS) recovery techniques resorts a dictionary matrix to recover a signal. The success of recovery heavily relies on finding a dictionary matrix in which the signal representation is sparse. Achieving a sparse representation does not only depend on the dictionary matrix, but also depends on the data. It is a challenging issue to find an optimal dictionary to recov...
متن کامل